

主な機能のご紹介

ご紹介

Martin Audio iK42/iK81 シリーズ パワーアンプは最新の先端技術を多方面から採用してい ます。数年にわたる開発をベースに、スイッチモードパワーサプライのメリットとこれまで で最上のシグナルプロセッシングの技術を統合しました。最新の A/D コンバートの技術を 応用し、エンジニアの求める最高の性能を引き出しています。 以下が主な機能で、のちの項目で詳しく説明していきます。

主な機能

- ・4ch または 8ch のクラス D アンプ
- ・高出力 4ch あわせて 20kW、8ch あわせて 10kW を 2U ラックサイズで実現
- ・堅牢なプロテクション性能、公演を継続していくための監視機能
- ・外部ブレーカープロテクション(EBP)で過電流によるブレーカー遮断をリミット
- ・Martin Audio 独自の最小信号経路設計
- ・業界最高峰の音質性能。最新のアンプ技術とリニアマクロディテイル(LMD)を用いた 先進的な DSP アルゴリズム
- ・96kHz サンプリング周波数で 40kHz までのフラット特性を実現
- ・ロータリーエンコーダ、色灯式ボタン、グラフィカルなディスプレイで、迅速で直感的、
 使いやすいコントロールインターフェースを実現
- ・ハイスピードなイーサネット通信。DHCP、固定 IP、オート IP、およびスイッチングハ ブやルーターなしで、コンピューターを直接接続可能。
- ・パワフルなドライブモジュールコンセプト。スピーカー目線で選択可能
- ・革新的なコンポーネントプリセット。個別の出力を別々なスピーカーシステムで運用可能
- ・12 段階のパラメーターグループ
- ・VX リミッター。パッシブ 2WAY システムでも帯域別制御が可能
- ・LIR フィルター。独自の FIR 様なリニアフェイズクロスオーバー
- ・高域のリニアフェイズ化でエンクロージャー間の干渉を最小化
- 動的ハイパスフィルターによって革新的な制動制御を実現。
- ・長時間のオーバーロードによってトランスデューサー温度感知機能がリミッターを可変
- ・オーバーシュートリミッターによってアベレージパワーを維持しながらピークパワーを 抑制
- ・Dante オーディオネットワークに対応。アナログまたは AES で自動的にフェイルオーバー。
- ・AES3 入力

ドライブモジュールコンセプトとは

iK42/iK81 シリーズのプロセッサーは各チャンネルの制御やグループ化に、よりスピーカー 目線でのアプローチができるよう、スピーカーコンフィグレーションの設定ができるよう 設計されており、これをドライブモジュールと呼んでいます。ドライブモジュールは1つ の入力段 DSP と、複数の出力段 DSP の組み合わせで構成され、ルーティングによって関 連付けられます。例えば、入力段の DSP B が出力 3 と 4 にアサインされた場合、これらは 2WAY のドライブモジュールとして構成され、入力段の DSP B はマスターのコントロール、 出力 3 と 4 の DSP は個別ドライバーに対するコントロールとなります。これによってスピ ーカー1 台を総合的に管理。VU-Net のドライブモジュールコントロールパネルでこのサブ システムは一括してコントロールしたり、モニターしたりすることができます。

ドライブモジュールはモジュールグループを構成することもでき、VU-Net 上でデバイス内のパラメーター階層を安全にグルーピングすることが可能です。

デバイス内のプリセットもドライブモジュール中心に考えられていて、個別のドライブモジュールごとにコンフィグレーションができるようになっています。

重要なのは、ドライブモジュールによってプロセッシング目線ではなく、スピーカーシステ ム目線で考えられるようになったということです。

ドライブモジュールのプリセットはコンポーネント単位に分解することもできます。 そうすれば、すべての出力を個別に制御することも可能です。

詳細はモジュールの項目をご参照ください。

オーバーレイ

デバイスが VU-Net のモジュールビューの中で使用されている場合、モジュールはオーバ ーレイグループとして扱うことができます。このグループでは様々な入力パラメーター操 作をグループ内のすべてのモジュールに適応させることができます。このとき、個別のグル ープ内で設定された個別パラメーターは維持されたままです。これらは設定されたセクシ ョン (ゲイン、ディレイ、EQ など) ごとにデバイス内で実現されます。オーバーレイパラ メーターが有効になっている場合、オーバーレイインジケーターが点灯します。同期してい るゲインやディレイといったパラメーターは、VU-Net 上のモジュールパネルにカッコで[] と表示されます。合算された EQ カーブは緑色で表示されます。オーバーレイでミュートし た場合は、VU-Net上のインプットミュートボタンが点灯します。デバイス上ではオーバー レイが有効になっている場合は、パラメーター値の後ろに[]がつくことで、それを表しま す。インプットのオーバーレイミュートはミュート/クリップインジケーターの点滅という 形で表示されます。オーバーレイパラメーターはデバイス本体では操作できません。これら は VU-Net上でのみ操作できます。しかしオーバーレイパラメーターをデバイス本体で削 除することは可能です。これらオーバーレイパラメーターがプリセットやスナップショッ ト、セッティングファイルには保存されないこともご留意ください。

LIR リニアフェイズクロスオーバー

デバイスには新しいタイプのクロスオーバーフィルター、「リニアインパルスレスポンス」 (LIR) クロスオーバーが搭載されています。これによって得られるリニアフェイズフィル ターは、周波数によって遅延時間が変化しません。この LIR クロスオーバーによってフラ ットな群遅延を実現でき、群遅延ひずみを完全に抑えることができています。 この LIR クロスオーバーの特性は、Linkwitz-Riley 24dB オクターブ・4th オーダーに似てお り、さらにフェイズシフトがないというものです。

FIR リニアフェイズ EQ

入力段のハイシェルビング EQ は FIR を使用しており、リニアフェイズです。各周波数の 遅延時間が一定で、トランジェント性能の維持に完璧なものです。スピーカークラスター内 の各所に違った EQ を施さなければならない場合、これはとても重要なこととなります。 例えば遠方向きのキャビネットにファースローの EQ ブーストをしなければならない場合 など。もしこれがリニアフェイズでなかった場合は、ゾーンをまたぐエリアの周波数特性は 悪くなってしまいます。 オーディオ接続

入力接続

それぞれの入力チャンネルにはアナログで XLR メス座が用意されています。またアンプ1 台につき1系統(2ch)の AES3 デジタル入力用の XLR メス座もございます。AES は 2ch だけだという点にご留意ください。Dante 接続を使えば、より多くのデジタル入力を実現で きます。

XLR は2番ホットです。3番がコールドです。1番はグランドですが、内部的にはシャーシ に落ちています。ケーブルのシールドは必ず接続したものを使用するようにお願い致しま す。

アンバランス接続を使用する場合

アンバランスで使用することは推奨していませんが、もしアンバランス接続をしなければ ならない場合は、信号線はXLRの2番ピンに接続してください。コールドピン3番とシー ルドピン1番はショートさせておく必要があります。

アンプ出力の結線

iK42 アンプでは各出力チャンネルに1つずつ、スピコンコネクターが装備されています。 接続は以下の通りで、アンプ背面にも記載がございます。

アンプ出力のコネクター結線 - iK42

さらにチャンネル1がバイアンプに設定された場合はチャンネル2出力にも同じ出力が出ます。同様にチャンネル3がバイアンプに設定された場合はチャンネル4出力にも同じ出力が出ます。

iK81 の場合はもともとの出力がこのような形式です。各出力スピコンコネクターには 2ch の出力が出ています。Ch1&2、Ch3&4、Ch5&6、Ch7&8 という 4 つのコネクターしかあり ません。

アンプ出力のコネクター結線 - iK42 バイアンプの場合と iK81 の場合

これに加え、ch1 と ch3 のコネクター(iK81 の場合はすべてのスピコンコネクター)はブ リッジモードで使用することも可能です。

アンプ出力のコネクター結線 – ブリッジ使用の場合

複数のスピーカーを各チャンネルに接続する場合はそのトータルインピーダンスが最低 2 Ω以上になるようにしてください。ブリッジモードの場合はこれが最低 4Ω以上になるよう にしてください。

ロードマッチング

各アウトプットは低インピーダンス(2、4、8Ω)でのドライブを意図して最適化されてい ますが、定電圧での使用もアウトプットメニューから設定できます。定電圧にはいくつかの 設定(25V、70V、100V ライン)があり、アンプの最大 RMS ボルテージを決定できます。 該当する設備に合わせてこれを設定してください。低インピーダンスのセッティングもい くつかございます。必須ではないですが、接続される負荷に合わせるようにしてください。 負荷に対してのパワーを最大化することができます。

パネルレイアウト

(iK42 のイラストになっています。iK81 は基本的 に同じですが、出力のインジケーターとミュート ボタンが倍ございます)

- 電源スイッチ アンプの主電源。デバイスが スリープモードになっていた場合、VU-Net を 通じてスリープを解除するか、このスイッチを OFF/ON することで解除してください。
- グラフィカルディスプレイ ホーム画面で す。チャンネル情報の便利なオーバービューと して表示されます。多くのページでは、上方に 選択されたチャンネルが、下方にそのパラメー ター値の情報が表示されます。スクリーンのコ ントラストは設定で変更でき、<UTILITY>ボ タンを押し、"Screen"を選択、エンコーダーで パーセンテージを調整します。ここでビューア ングルも調整可能です。
- 3. ステイタスインジケーター "オーバーレイ"イ ンジケーターはグループレイヤーが有効になっ ていることを示します。これは本体では操作す ることができません(オーバーレイが光ってい たときの項目参照) "Dante"インジケーター は Dante 信号がルーティングされているときに 光ります。"ONLINE"インジケーターは3つの 状態が存在します。消灯 - ユニットがオフラ インでコンピューターとつながっていません。 点滅 - ユニットが IP アドレスを探しに行って いる状態です。IP アドレスが見つからなかった 場合は自動的に自分の IP アドレスを設定し、 このインジケーターは消灯に戻ります。点灯 -ユニットがオンラインの状態でソフトウェアと つながっている状態を示します。IP セッティン グは<UTILITY>ページ内で確認、変更できま す。"AES3"インジケーターはどれかの入力で AES3 が使用されている際に点灯します。

- パラメーターエンコーダー -2段階のベロシティ感度を持ったエンコーダーでディスプレイに表示された パラメーターを操作できます。1つの画面で最大3つのパラメーターが表示されます。画面上パラメータ ーの名称はその値の上部に表示されています。SELECT ボタンを押してパラメーターを選択し、ADJUST で変更します。
- 5. ページ選択ボタン もし<INPUT>または<OUTPUT>または<UTILITY>が選択されていた場合、UP ボタンや DOWN ボタンが点灯します。ユーザーはこれを使って様々なページの意図するパラメーターを 繰って、確認したり変更したりすることができます。プリセットやスナップショットをストアしたり、リ コールしたりするときなどは、<ENTER>ボタンで決定します。このボタンはユーザーに確認を求めると きにのみ点灯します。重要な機能を ON/OFF する際には、ユーザーに注意喚起を行うために点滅する場 合もあります。
- 6. メニューボタン -3つのボタンがあり、デバイスのセクションの確認や編集が行えます。<OUTPUT>ボタンは該当する出力チャンネルを表示させるものです。<INPUT>ボタンは該当する入力チャンネルの信号もしくは入力段の DSP のパラメーターを表示させるものです。<INPUT>や<OUTPUT>を繰り返し押すと入力/出力の表示を順に切り替えることができます。最後のチャンネルまで行くとホーム画面に戻ります。<UTILITY>ボタンは、特定のチャンネルに属さない、その他もろもろのパラメーターを表示するものです。エディットモードの場合はこれら3つのボタンのいずれかが点灯した状態です。これらはどれか1個だけが押せるようになっていて、どれかを押すと、その他は消灯します。最終的にUTILITYを押すとホーム画面に戻ります。
- 入力信号インジケーター "Sig"、"-12"、"0dBu"、"+6"、"+12"、"Clip (MUTE) "という色照式インジ ケーターが各 DSP チャンネルの A、B、C、D に装備されています。信号はおよそ-40dBu 以上が入力さ れると表示されます。クリップ/ミュートのインジケーターは入力のオーバーロードを告げるもので、実 際は本当のクリップの 1dB 手前で光るようになっています。このインジケーターはミュート状態を表す 場合には点灯します。
- 8. ミュートボタン 各チャンネル、DSP 出力のミュートを自照式のボタンで操作、表示します。これら は、AUX ポートからの制御でミュートされた場合、または VU-Net 上で MUTE-ALL を実施した場合、 またはプロテクションが働いて強制ミュート状態になったときなどには点滅します。
- ブリッジインジケーター チャンネルがペアリングされ、ブリッジモードで使用されているときに点灯 します。ペアリングされたL側のチャンネルの操作をすることで設定が可能です。ブリッジモードの項目 参照ください。
- 10. アンプインジケーター アンプにプロテクションがかかり、該当するパラメーターに合わせて保護のために、ゲインの低下が始まったことを示します。これはクリップが付いた場合にも動作します。
- 11. ドライバーインジケーター リミッタースレッショルドを 6dB 以上超えると点灯します。またはエクス カーションリミッターの値を超えた場合、熱感知リミッターが発動した場合などでも点灯します。熱感知 リミッターのリリースタイムは遅いので、チャンネルの信号レベルが減少した場合もしばらくは点灯が続 く場合があります。
- 12. リミッターインジケーター 出力段のインジケーターはリミッターのステイタスと出力レベルの状況を 表示します。このメーターはリミッタースレッショルドに対するマージンのメーターです。<SIG>インジ ケーターは出力に信号が出ると点灯します。2番目の<-6dB>はリミッタースレッショルドまであと 6dB となった際に初めて点灯します。3番目の<LIMIT>はリミッタースレッショルドに到達したことを表しま す。

- スピーカーコネクター(iK81の場合)スピコン 出力です。1つ目のスピーカーは1+と1-のター ミナルへ、2つ目のスピーカーは2+と2-のター ミナルへ接続してください。ブリッジモードの場 合は1+と2+のターミナルを使用してください。
- スピーカーコネクター(iK42の場合)スピコン 出力です。スピーカーは1+と1-のターミナルへ 接続してください。Ch1のコネクターにはCh2 の出力が2+と2-のターミナルへ同時に出ていま す。同様にCh3のコネクターにはCh4の出力が 2+と2-のターミナルへ同時に出ています。ブリ ッジモードの場合はCh1またはCh3のコネクタ ーを使用し、1+と2+のターミナルで結線してく ださい。
- アナログリンク出力 入力された信号のコピー がパラレルで出力されています。(例えば次のア ンプへ)
- アナログ入力コネクター すべてのオーディオ コネクターはバランス接続となっています。1番 ピンはグランドです。2番がホット、3番がコー ルドとなっています。
- AES3 オーディオ入力コネクター デジタルオ ーディオの入力コネクターです。コネクターはバ ランス接続となっています。1番ピンはグランド です。2番がデータ、3番もデータとなっていま す。リンク出力コネクターはバッファーされた AES3 信号が出るようになっています。
- Dante ポート Dante 接続用のポートで、プラ イマリー/セカンダリーとしても使用できるよう になっています。
- イーサネット通信接続用ポート このアンプは Martin Audio VU-Net ソフトウェアでコントロー ルすることができ、MLA シリーズや、CDD-Live、DD12、PSX といった同じプラットフォー ムで動作する他の機器と一緒に使うことが可能で す。この接続をこちらのイーサネットポートを使 って行います。ファームウェアのアップグレード もここから行います。

- 8. AUX ポート オグジュアリーポートは外部制御によるスナップショットのリコールやミュート制御など に使用されます
- 9. 電源 機器は 32A のアース付きパワコンケーブルを使用して、適切な電源に接続されなければなりません。この機器はスイッチモードパワーサプライを採用しており、100V~230V、50/60Hz の電源に特別な切り替えなしに自動で適応します。
- 注)機器は適切な電源アースに接地されている必要があります。もしこれを怠った場合、保証の対象外とな り、性能に影響が出たり、人命に危険が及んだりするおそれもあります。
- 10. リレー出力 この独立したリレー出力は、外部監視システムによってアンプの異常を検知したりすると きに使用します。 詳しくはリレー出力の項目を参照ください。

クイックスタート

iK81 と iK42 は単なるパワフルなアンプということに留まらず、その大変多機能なプロセ ッシング能力で様々な複雑なシステムにも対応できるように設計されています。その一方 で、ユーザーが必要なのは該当するスピーカーに対し、適切なプリセットをリコールするだ け。あとは信号とスピーカーを接続すればすぐに現場が始められます。このセクションでは iK42 を使っていかに素早く直感的なセットアップができるかという点をご紹介していきた いと思います。

XE500 (または XE300 バイアンプ)のプリセット

- アンプを接続しましょう。iK42 は電源がパワコン 32A の接続となります。バランス アナログ信号であれば入力 XLR に、AES3 であれば AES 専用のコネクターに、Dante であれば Dante 用 RJ45 ポートへ接続してください。XE500 やその他のバイアンプで 駆動するスピーカーは、直接出力 1 のスピコンか、出力 3 のスピコンに接続できま す。バイアンプを選択した時点で Ch2 出力や Ch4 出力は、該当するスピコンの 2± に結線されているからです。詳細は電源、入力、出力のセクションをご参照ください。
- アンプに電源を入れましょう。一連の起動のサイクルが完了したら、"Input"を押し、 下向きの▽を押してチャンネルAのプリセットリコールを選択します。

3. ロータリーエンコーダをまわして、XE500のプリセットを選びます。

4. "Enter"を押して決定。以下のメッセージが表示されます。

5. Enter ボタンが点滅します。これを押すとさらにメッセージが表示されます。

6. これで入力 A にされた信号は、出力 1 に XE500 の LF として、出力 2 に XE500 の HF として出力されます。再度"Input"を押してください。

そうすると画面には入力 B に対してのプリセットを設定するページが表示されます。
 またロータリーエンコーダを回して XE500 を選択し、"Enter"を押します。

8. "Enter"を押しプリセットロードが完了します。次に"UTILITY"を押して元の画面に 戻ってください。

上記の画面では、DSPAとDSPBにどちらもXE500のプリセットを呼び出した状態です。 入力1が出力1と2に、入力2が出力3と4にルーティングされ、入力3と4は何にも使 われていないという状態を表現しています。これでアンプは使用できるようになったわけ です。 XE300 パッシブのプリセット

パッシブのモニタースピーカーのプリセットを設定する手順も基本的に同じですが、この 場合は4つすべての入力に対し、そのプリセット設定を実施しなければなりません。

- アンプを接続しましょう。iK42 は電源がパワコン 32A の接続となります。バランス アナログ信号であれば入力 XLR に、AES3 であれば AES 専用のコネクターに、Dante であれば Dante 用 RJ45 ポートへ接続してください。XE300 やその他のパッシブで駆 動するスピーカーは、直接出力 1、2、3、4 のスピコンに接続できます。詳細は電源、 入力、出力のセクションをご参照ください。
- アンプに電源を入れましょう。一連の起動のサイクルが完了したら、"Input"を押し、 下向きの▽を押してチャンネルAのプリセットリコールを選択します。

5. もう一度"Enter"を押すと下記のようにメッセージが表示されます。

6. 再び"Input"を押すと入力 B に対してのプリセット設定の画面に移行します。

 これを繰り返します。ロータリーエンコーダを回して XE300 を選択、"Enter"を2回 押す、プリセットの設定が完了したら、もう1度"Input"を押して次はCという流れ です。さらにDの設定まで完了したら、"UTILITY"を押してホーム画面に戻ります。

IK42			
A XE300 P	B XE300 P	C XE300 P	D XE300 P
1:1	2:2	3:3	4:4

これで DSP の A、B、C、D が XE300 パッシブの設定になりました。入力1は出力1に、 入力2は出力2に、入力3は出力3に、入力4は出力4にアサインされています。これでア ンプは使用できるようになりました。 オペレーション

アンプの起動

電源スイッチを入れた際に、アンプは一連の起動サイクルを始め、すべてのサブメニューを チェックします。同時に画面にはその進捗状況が表示されます。これが完了し、ディスプレ イにホーム画面が出るとき、そこにはドライブモジュールの構成が記述された表示になっ ています。

モジュール、プリセット、スナップショットについて

ドライブモジュールはスピーカーのサブシステムを表しています(SUB であるとかフルレ ンジであるとか)。またこれらはルーティングによっては、1 つの入力に対し、複数の出力 チャンネルを持つ場合もあります。ドライブモジュールのサイズはそこにいくつの出力を 持っているかによって決定されます。アンプには最大4つのモジュールを設定できます。

モジュールプリセットはドライブモジュールのサイズに合わせたセッティングパラメータ ーをまとめたものです。このプリセットは 1 つの入力に対してのパラメーターと、モジュ ール内に含まれるいくつかの出力のパラメーターをセットにしたもので構成されます。た とえばバイアンプのシステムです。BlacklineX のサブウーファーとフルレンジキャビネッ トの組み合わせ、あるいはもともとバイアンプ駆動のスピーカー、XE500 などの場合です。 モジュールプリセットがリコールされると、自動的に入力 DSP と出力 DSP のルーティン グも変更され、ドライブモジュールのサイズに合わせて、出力数も決定されます。ですから、 モジュールプリセットを呼び出す場合は該当する出力数に合致した、連続したチャンネル が必要となります。

コンポーネントは1対1の入出力に対するセッティングパラメーターをまとめたものです。 モジュール内のどの出力に対するコンポーネントも好きな出力に対しリコールすることが できます。

スナップショットはデバイス全体に対するもので、デバイスのなかのほとんどすべての設 定を含みます。ここには4つの入力コンポーネント、4つの出力コンポーネント、さらにル ーティングや、入出力がアナログなのかデジタルなのかといったデバイスの中核となる情 報も含んでいます。

	Input A component number	Output 1 component number
Device	Input B component number	Output 2 component number
Settings	Input C component number	Output 3 component number
	Input D component number	Output 4 component number

ナビゲーション

iK42 と iK81 のパラメーターナビゲーションとその設定はとても直感的です。奥深い階層 のメニューを探すようなデザインにはなっていません。すべてのパラメーターはパラメー ターページのマップをスクロールすることでアクセスでき、2 次元的な EXEL 表のようなレ イアウトイメージです。横方向に繰っていくと、様々なチャンネルにアクセスでき、縦方向 に繰っていくとプロセッシング項目別のパラメーターページにアクセスできます。

何かパラメーターを確認するには、<INPUT>または<OUTPUT>チャンネルボタンを該当 するチャンネルが表示されるまで何回か押します。そして△または▽を押してスクロール。 必要なパラメーターにアクセスします。たとえば、入力 C のパラメトリック EQ の 1 バン ド目にアクセスしたい場合、まず'INPUT'を 3 回押します。そうすると LCD 画面の左側に C が表示されます。そして△を 5 回押します。画面上にはゲイン、ディレイ、ハイパスフィ ルター、ローパスフィルター1、ローパスフィルター2、と表示されたのちに、次が最初の パラメトリックです。ここでロータリーエンコーダを回してセレクトし、値を調整してくだ さい。

ロータリーエンコーダは2つあり、SELECT(選択)とADJUST(調整)です。よく複数の パラメーターが画面のいろいろな箇所に表示されるということがあります。その中で必要 なパラメーターにアクセスするためには、左側のエンコーダ(SELECT)を回すことで、調 整しようとしているものが選択でき、該当するものが画面上ハイライト表示になります。そ して右側のエンコーダ(ADJUST)を回すことで、値を変化させられます。回す方向は一般 的なボリュームに等しく、増加させる場合は時計回りに、絞る場合は反時計回りに回します。 エンコーダはベロシティ感知型になっていて、早く回すと勢いよくスクロールできます。

ホーム画面

ホーム画面にはデバイスのコンフィグレーション内容が表示されています。一番上にはユ ーザーがつけたデバイスの名前、そして下側には 4 つのドライブモジュールの情報が表示 されます。ドライブモジュールの上側には入力 DSP チャンネルの A、B、C、D の記載がと ユーザーがつけたチャンネルの名前が、下側には物理的な入力チャンネルの番号とそこに ルーティングされている出力チャンネルの番号が表示されます。

デバイスモジュール

iK42/iK81 ではスピーカーのサブシステムを表すのにドライブモジュールを使用します。ド ライブモジュールを使うことで、従来のプロセッサー風のアプローチではなく、スピーカー 目線でシステム設計を実施することができるからです。ドライブモジュールは 1 つの入力 に対し、いくつかの出力を持つもので構成され、その構成はルーティングによって決定され ます。たとえば入力 DSP B が出力 DSP 3 と 4 にルーティングされていた場合、これは 2WAY のドライブモジュールとなります。入力 DSP B がマスターとなり、出力 DSP は個別のス ピーカードライバーに対してのコントロールをすることになります。すなわち入力 DSP パ ラメーターはドライブモジュールのコントロール(スピーカー全体のコントロール)となり ます。VU-Net 上のドライブモジュールコントロールパネルは、該当するモジュール全体の 制御や監視として使用できます。

ドライブモジュールプリセット

このプリセットではデバイス全体のセッティングは変わりません。むしろ1つのモジュー ルプリセットをリコールするということは1つのドライブモジュールを作るということと 同義で、必要な出力数を持ったルーティングを有する入力のプリセットを起動し、結果とし て必要な出力にもその該当するデータが入るということです。このドライブモジュール内 のパラメーターはモジュールプリセット内のコンポーネントすべてにセットされています。

しかしながら、連番でない出力を含むモジュールというのも手動でルーティングを操作す ることによって構築可能です。この場合はコンポーネントプリセットを必要な出力に対し 個別にリコールすることになります。こうして構築したデバイス全体はスナップショット として保存できます。前述のような変則的なモジュールはモジュールプリセットとしては 保存できません。

注) もしモジュールプリセットが複数の出力を含んでいた場合、ブリッジされた出力は1つ のチャンネルとして扱われます。もしブリッジチャンネルを含んでいた場合には3つの出 力を持った2WAY モジュールというようなものができる場合があることにご留意ください。

注) DSP 入力は必ずしも物理的な入力チャンネルと合致しません。iK42/iK81 では 4 つの オーディオ入力 1、2、3、4 に対し、4 つの DSP 入力 A、B、C、D が別に存在します。 これはマトリクスを形成していて、いずれかの物理的な入力 (アナログだったり、AES だっ たり、Dante だったり) が複数の出力にパッチできたり、逆に複数の入力をサミングしたり することも可能です。

コンポーネントプリセット

コンポーネントプリセットは 1 つの出力に対してのみのプロセッシングデータです。モジ ュールプリセット内のどこの部分でも、個別に呼び出すことができます。こうしてコンポー ネントプリセットリコールによって一部を変更したドライブモジュールは別な名前でモジ ュールプリセットとして保存できます。

ルーティングを手動で変更した場合はスナップショットとして保存してください。詳細は スナップショットの項目、コンポーネントのリコールの項目を参照ください。

ファクトリーモジュールプリセット

デバイス内にはファクトリープリセットとして、数々のスピーカーに対応したプリセット があらかじめ入っています。

ファクトリープリセットではいくつかのパラメーターは固定で見られなくなっているもの もあります。使っていないパラメーターはユーザーが使用できるようになっています。隠さ れているパラメーターの種類や数はファクトリープリセットに応じてまちまちですが、た とえばクロスオーバー周波数であったり、出力段のディレイ値であったり、いくつかの EQ であったりします。これらはスピーカーキャビネットの設計上、必要とされているものであ り、現場に応じて値を変更するという可能性のないものです。ファクトリープリセットはロ ックされていて(プリセット名の後ろに四角印が付きます)、上書きできないようになって います。ただしユーザーがこれを編集したものを、別の名前でフリーのプリセットバンクに 保存することは可能です。

ファクトリープリセットに加えて、「スケルトンプリセット」というものも存在します 。これは新しいプリセットを作る際に役立ちます。たとえば、複数のスピーカーのコンビネ ーションを前述のファクトリープリセット同様のかたちでリコールできるようにするもの です。これらのプリセットもロックしておくことが多いですが、場合によってはこれを編集 したものを、別の名前でフリーのプリセットバンクに保存することも可能です。

モジュールプリセットの保存

ドライブモジュールができると、これを保存することができます。<INPUT>ボタンを該当 するチャンネルが表示されるまで何回か押し、次にストアページが表示されるまで▽を何 回か押してください。"ADJUST"エンコーダを回してプリセット番号を選択できます。スト アしたいロケーションを決めたら、<ENTER>を押すと確定です。名前を付けてプリセット を保存できます。名前を付ける際は、変更できる文字がハイライト表示されますので、 "ADJUST"エンコーダを回して文字を選択します。次の文字を編集するには、"SELECT"エ ンコーダを回して変更する位置を選択してください。このようにして新しい名前が記入で きたら、<ENTER>ボタンを押すことでこの作業を確定することができます。一度画面には "Enter to confirm or ▽ to exit"と確認を促すメッセージが出ますので、確定する場合は ENTER、キャンセルする場合は▽を押してください。

注) 連番でない出力を含むモジュールに対しては、ドライブモジュールプリセットとしてス トアできません。

注)ドライブモジュールプリセットをアンプ本体で保存する場合、コンポーネント名は編集 できません。コンポーネント名も編集したい場合は VU-Net を使用して保存してください。

モジュールプリセットのリコール

ドライブモジュールプリセットをリコールするには、<INPUT>ボタンを押し、▽ボタンを 押して RECL プリセットページまで行きます。"ADJUST"エンコーダを回して使用可能な プリセットを検索できます。呼び出したいプリセットが見つかったら、<ENTER>を押しま す。画面には"Enter to confirm or ▽ to exit"と確認を促すメッセージが出ますので、確定 する場合は ENTER、キャンセルする場合は▽を押してください。

プリセットはパラメーターオーバーレイを含んでいません。パラメーターオーバーレイに は影響しないので、つまり運用上これを保持することができるということです。

コンポーネントプリセットのリコール

コンポーネントプリセットを(単独の出力に対し)リコールするには、<OUTPUT>ボタン を押し、▽ボタンで RECL プリセットページまで行きます。"ADJUST"エンコーダを回し て使用可能なプリセットを検索できます。(モジュールプリセット-コンポーネント番号&モ ジュールプリセット-コンポーネント名のように表示されます)

呼び出したいプリセットが見つかったら、<ENTER>を押します。画面には"Enter to confirm or \bigtriangledown to exit"と確認を促すメッセージが出ますので、確定する場合は ENTER、キャンセルする場合は \bigtriangledown を押してください。

コンポーネントプリセットはパラメーターオーバーレイを含んでいません。パラメーター オーバーレイには影響しないので、つまり運用上これを保持することができるということ です。

入力について

AES3 入力

通常のアナログ入力に加え、本デバイスは AES3 デジタル入力を装備しています。いずれか の DSP 入力が AES3 にアサインされている場合、"AES3"インジケーターが点灯します。 アナログ入力と AES 入力のレベル差に関しては、オーディオソースによっても変動するの で、デジタル入力ゲインを調整して相互調整を実施する必要があると思います。AES3 のゲ インは AES3 ゲインパラメーターの入力トリムによって調整できます。例えば、 0dBFS=+18dBu を実現するためには、AES3 のトリムは-2dB に設定します。 0dBFS=+24dBuを実現するためには、AES3 のトリムは+2dB に設定します。

このデバイスは 28kHz から 108kHz までのサンプリングレートに自動的にロックするよう に設計されています。

Dante 入力

Dante 入力を使用すれば、Dante ネットワーク上のどのソースでも任意の信号を取り込む ことができます。このためにデバイス背面に装備されている専用のネットワーク端子にケ ーブルを接続し、該当するチャンネルの入力タイプを"Dante"に変更してください。 入力ソースとして Dante がルーティングされている場合は、エンコーダの上の"Dante"イン ジケーターが点灯します。このインジケーターはもし背面のポートにケーブル接続がなさ れていなかったとしても光りますのでご注意ください。あくまでソース選択を示すもので す。

AES3 入力と同様に、アナログ入力と Dante 信号ソースとの間でゲイン調整することが可 能です。入力トリムの Dante ゲインパラメーターを調整してください。

アンプはストリーム上のサンプルレートに自動的に設定されます。

他の機器との Dante パッチは別途 Audinate Dante Controller が必要になります。詳しくは Audinate のホームページなどをご参照ください。

自動入力検知システム(フェイルオーバー)

自動的に入力選択を実施することも可能です。入力タイプ画面にはフェイルオーバーパラ メーターがあり、ディフォルトはマニュアル(手動)となっています。マニュアルの時には 使用したい入力のタイプをユーザーが選択することになりますが、フェイルオーバーの AES3>アナログが選択されていた場合、AES3 信号が検知されていれば自動的に AES3 が使 用されます。もしこの AES 信号が途切れた場合、自動的にアナログに切り替わるわけです。 もしフェイルオーバーの Dante>アナログが選択されていた場合、Dante ソースが検知され ていれば自動的に Dante が使用されます。もしこの Dante ストリームが途切れた場合、自 動的にアナログに切り替わるわけです。

同様に、フェイルオーバーの Dante>AES3 が選択されていた場合、Dante ソースが検知さ れていれば自動的に Dante が使用されます。もしこの Dante ストリームが途切れた場合、 自動的に AES に切り替わるわけです。

一方'AUTO'というセッティングは、優先順位の高い順に、入力ソースを自動的に選択しま すので、ユーザーは何か信号を入力すれば、これが自動的に選択されることとなります。こ の優先順位は Dante が最優先、次が AES3、アナログが 3 番目です。

注)自動検知選択機能は手動操作よりも優先されます。すなわち、有効な Dante ストリー ムがない状態にもかかわらず手動で Dante を選択したとしても、すぐ自動的にフェイルオ ーバーの入力ソースに切り替わります。

ゲインと極性

選択された入力チャンネルのゲインページでは該当する入力チャンネルに対する信号の増 減をコントロールすることができます。"SELECT"エンコーダを操作して、ゲイン値がハイ ライト表示されている部分の値を"ADJUST"エンコーダで 0.2dB 単位で操作。-40dB から +20dB の範囲で調整が可能です。グループオーバーレイパラメーターが有効になっている 場合は[]という記号で表示されます。(詳細はオーバーレイの項目参照ください) このページでは選択された入力に対する極性も変更できます。Normal(正相)または Reverse (逆相)の選択です。また選択されたチャンネルに対するミュートも可能です。

ディレイ

ディレイページは選択されたチャンネルに対するディレイ値をコントロールします。調整 範囲は0から 998ms です。ディレイ値は低い値においては細かいステップで調整でき、値 が大きくなるにつれてそのステップは粗くなって行きます。グループオーバーレイパラメ ーターが有効になっている場合は[]という記号で表示されます。(詳細はオーバーレイの項 目参照ください)

ハイパスフィルター

入力信号のシステム全体に対するハイパスフィルターが装備されています。フィルタータ イプは 1st order、Butterworth、Bessel、Linkwitz-Riley、Hardman の中から選択できます。 フィルターのスロープ特性は4th order または24dB オクターブまでの間から選択できます。 すべてのフィルタータイプに両方のスロープ設定があるわけではございません。例えば、 Linkwitz-Riley で 18dB オクターブのフィルターというのは存在しません。

Hardman タイプのフィルターは常に**order と表現されます。これはフィルター自体が リニアスロープに比べて極端に急峻であるためで、**dB オクターブという表現は存在しま せん。

パラメトリック EQ

各入力チャンネルには9ステージの EQ が装備されています。3 つのシェルビングフィルタ ーと6 つのパラメトリックフィルターです。

FIR シェルビング EQ

入力のハイシェルビング EQ は FIR フィルターを使用しており、リニアフェイズとなりま す。リニアフェイズではすべての周波数における遅延時間が同一です。スピーカークラスタ ー内の各所に違った EQ を施さなければならない場合、これはとても重要なこととなりま す。例えば遠方向きのキャビネットにファースローの EQ ブーストをしなければならない 場合など。もしこれがリニアフェイズでなかった場合は、ゾーンをまたぐエリアの周波数特 性は悪くなってしまいます。リニアフェイズの FIR EQ であるため、必然的に少々のレイテ ンシーが発生します。これはセッティングの如何によらず一定の遅延です。しかし、'Enable' パラメーターが'OFF'になっている場合、このフィルターは信号経路からバイパスされます ので遅延はなくなります。このページでは周波数パラメーターを 2kHz から 20kHz までの 間で変更できます。またフィルターの enable/disable、0.2dB 単位での CUT または Boost が可能です。グループオーバーレイパラメーターが有効になっている場合は[]という記号 で表示されます。(詳細はオーバーレイの項目参照ください)

このフィルター (そしてそこにかかるレイテンシー) は enable パラメーターの'OFF'設定に よって完全に除去できます。この EQ は'ON'のとき、モジュールグループにのみ適応でき るものです。

パラメトリックフィルター

パラメトリックフィルターでは周波数、Bandwidth、ゲインといった項目があります。周波 数は10Hzから25.6kHzまでの間で調整可能です。Bandwidthは画面上Widthと表示され、 0.10オクターブから5.2オクターブまでの間で調整可能です。BandwidthはQやオクター ブ(Oct)といったかたちで表示もできます。ゲインは0.2dBステップで調整可能。グルー プオーバーレイパラメーターが有効になっている場合は[]という記号で表示されます。(詳 細はオーバーレイの項目参照ください) ルーティング

ルーティングでは、任意の物理的なアナログ、またはデジタル信号を任意の DSP 入力に対 しアサイン可能です。これはマトリクスを構成しており、DSP は単独の入力だけでなく、 ペアの入力を受けることも可能です。「1+2」や「3+4」や「1+3」や「1+4」や「2+3」や 「2+4」といった設定が可能です。サミングされたものは 6dB のアッテネートがなされ、他 の入力とのバランスが取れるようになっています。 出力

ゲインと極性

ゲインと極性

選択された出力チャンネルのゲインページでは該当する出力チャンネルに対する信号の増 減をコントロールすることができます。"SELECT"エンコーダを操作して、ゲイン値がハイ ライト表示されている部分の値を"ADJUST"エンコーダで 0.2dB 単位で操作。-40dB から +20dB の範囲で調整が可能です。

このページでは選択された入力に対する極性も変更できます。Normal(正相)または Reverse (逆相)の選択です。

ディレイ

ディレイページは選択された出力チャンネルに対するディレイ値をコントロールします。 調整範囲は0から998msです。ディレイ値は低い値においては細かいステップで調整でき、 値が大きくなるにつれてそのステップは粗くなって行きます。

ハイパス/ローパスフィルター

出力信号に対するハイパスフィルターとローパスフィルターが装備されています。フィル タータイプは 1st order、Butterworth、Bessel、Linkwitz-Riley、Hardman、さらに LIR リニ アフェイズフィルターの中から選択できます。フィルターのスロープ特性は 8th order また は 48dB オクターブまでの間から選択できます。すべてのフィルタータイプに両方のスロー プ設定があるわけではございません。例えば、Linkwitz-Riley で 18dB オクターブのフィル ターというのは存在しません。

Hardman タイプのフィルターは常に**orderと表現されます。これはフィルター自体が リニアスロープに比べて極端に急峻であるためで、**dB オクターブという表現は存在しま せん。

LIR クロスオーバーフィルター

Martin Audio のユニークな点として、LIR(リニアインパルスレスポンス)クロスオーバー フィルターで、全周波数で遅延時間が一定というリニアフェイズのクロスオーバーが実現 できます。LIR クロスオーバーを使えばフラットな群遅延が実現できるということで、ユー ザーは群遅延ひずみから解放されます。このフィルターは一般的な FIR フィルターととて も近いものですが、複雑さがなく、FIR 技術の問題点を改善しています。

LIR クロスオーバーの肩特性は Linkwitz-Riley 4thオーダーに近似していますが、フェーズ シフトが全くおこらないという特徴があります。 このクロスオーバータイプでは非常に狭いバンドワイズは実現できません。もしローパス 周波数とハイパス周波数が著しく接近した場合、フィルターはミュートされます。

リニアフェイズフィルターでは遅延は避けられません。これは物理法則によるものです。こ の遅延時間を最小限にするためにも、なるべく低い周波数には普通のクロスオーバー(たと えば Linkwitz-Riley など)を使用することをお勧めします。特に LIR を 100Hz 以下に適合 させた場合、群遅延歪みをおこす可能性があります。

この一定の遅延時間はドライブモジュールの中で使用されている一番低いハイパス周波数 に依存します。

詳細は遅延時間の項目をご参照ください。

パラメトリック EQ

各出力チャンネルには独立した 10 バンドの EQ が装備されています。2 つのシェルビング フィルターと 8 つのパラメトリックフィルターです。

パラメトリックフィルターでは周波数、Bandwidth、ゲインといった項目があります。周波 数は 10Hz から 25.6kHz までの間で調整可能です。Bandwidth は画面上 Width と表示され、 0.10 オクターブから 5.2 オクターブまでの間で調整可能です。Bandwidth は Q やオクター ブ (Oct) といったかたちで表示もできます。ゲインは 0.2dB ステップで調整可能。

リミッター

iK42/iK81 シリーズは出力段に3種のリミッターを装備しています。リミッターがアンプ やドライバーの保護に正しく動作していたとしても、起こりうるすべてのシナリオに対応 できるわけではありません。Martin Audio はそういった事故のすべてに責を負うことはご ざいませんことにご留意ください。

VXリミッター

これはピーク検出型の信号リミッターです。VX モードパラメーターでリミッターのスタイ ルを決定できます。VX (バーチャルクロスオーバー) モードが OFF になっていた場合、リ ミッターは従来型のそれの動作をします。スレッショルドとオーバーシュートだけがコン トロールできます。

オーバーシュートリミッターは、事前に設定したメインのリミッターのアタックタイムが 及ばない信号がスレッショルドを超えることを防ぎます。理想的なオーバーシュートのセ ッティングはおよそ 8dB です。オーバーシュートの値を下げすぎると音に影響が出ます。 VX モードが有効になっている場合、ユーザーが「バーチャルクロスオーバー」のポイント を決定することができます。これで1つの出力に対し2つのリミッターが動作している状 態になり、パッシブ2WAYシステムにおいても個々のドライバーに合わせたリミッターが 実現できるのです。アタックタイム、リリースタイムも個別に設定可能です。2番目の高域 用リミッタースレッショルドは1番目の低域用リミッターのスレッショルドと相関関係に あります。

このリミッターを使用すると一定の遅延が発生します。VX モードでなかった場合、遅延は ドライブモジュールの中で使用されている一番低いハイパス周波数に依存します。VX モー ドの場合、遅延時間は分割している周波数に依存します。この遅延は同じドライブモジュー ル内の他の出力にも付加され、最終的なフェーズが合うようにコンペンセーションされま す。

詳細は遅延時間の項目をご参照ください。

Tmax 温度検知型リミッター

温度リミッターはオーバーヒートによるドライバーユニットの損傷を防ぐための機能です。 ドライバーの温度を予測し、事前に設定したリミットに対し、出力のアベレージパワーを維 持するように動作します。アタックタイム、リリースタイムを制御することで、ボイスコイ ルやマグネットなどドライバーの様々なアッセンブリーの保護に役立ちます。

ここでは3つのパラメーターが存在し、

スレッショルド – ドライバーが耐えられる断続的な RMS ボルテージ。アンプの出力を見 て制御します。スレッショルドを最大の"OFF"に設定すると温度リミッターは作動しませ ん。

アタック - ドライバーがヒートアップするであろう時間(秒で設定)

リリース - ドライバーがクールダウンするであろう時間(アタックタイムの何倍かという 設定)

Xmax エクスカーションリミッター

エクスカーションリミッターはコーン紙やボイスコイルの変位量がオーバーし、機械的破 損をするのを保護するためのものです。この変位(エクスカーション)は信号の周波数に多 大に依存するもので、ドライバーは非常に低い周波数域で破損しやすい傾向にあります。 このリミッターは低い周波数ほど敏感に働き、リミッター動作もゲインを変化させるとい うよりは、可変式ハイパスフィルターを使って低域のレスポンスを変化させていきます。 これによって効果的にドライバーを保護するのです。

このリミッターを設定するには、それぞれの周波数に応じて、また様々なレベルに応じて、

ドライバー変位量がどのように変化するのかという一連の情報が必要です。そのうえで必要なフィルターカーブも変わってきます。ピークボルテージとその際の周波数といった情報も欠かせません。

Xmax リミッターは2つのパラメーターだけが存在します。

スレッショルド – 超えてはならないポイントのピークボルテージ。アンプの出力を見 て制御します。スレッショルドを最大の"OFF"に設定するとエクスカーションリミッターは 作動しません。

周波数 – スレッショルドボルテージを超えても大丈夫な周波数

パラメーター設定'Min'はより進んだアプリケーション用です。決まった周波数以下はオフ にしてしまうというリミッター動作をします。この値は通常はディフォルトで 5Hz になっ ています。

ブリッジ

アンプのあるチャンネルがブリッジモードに設定された場合、これはアンプの 2ch を使用 してより大きい出力でスピーカーを鳴らすという設定になります。このモードでは 2ch は ペアとなって動作しますので、出力のコントロールは1つだけになります。これはペアと なったL側チャンネル(若番)によってコントロールできます。ブリッジ設定はドライブ モジュールプリセットをリコールする前に設定してください。モジュールプリセットはブ リッジされたペアを単一チャンネルとみなして発現します。ブリッジモードは ON/OFF 可 能で、これは AMP ページの奇数チャンネル出力で設定します。

Enable になっている場合ブリッジされているチャンネルの間の Bridge インジケーターが点 灯します。ブリッジになっている場合、ペアになっているほうのチャンネル(偶数チャンネ ル)にはリミッターメーターに信号は表示されませんし、ミュートボタンも動作しません し、どのパラメーター設定にもアクセスできません。ただしアンプのプロテクションを示す インジケーターだけは引き続き動作します。

ブリッジされたチャンネル出力は通常のチャンネルよりも 6dB 増加します。したがいましてこのときのボルテージゲインは 38dB となります。

これはリミッターセッティングに影響し、1 つのシステムの中でブリッジされたチャンネル と通常のチャンネルが存在する場合、バランスが崩れる場合がありますのでご注意ください。 ルーティング

どの DSP 入力の信号でも、出力はドライブできます。このルーティングは基本的にどんな ドライブモジュールが設定されたかによって決定します。ルーティングは基本的に連続し たチャンネルに対し設定されます。しかしながら、場合によっては連続しないかたちでのド ライブモジュールもつくることは可能で、手動でのルーティングとコンポーネントのリコ ールで実現できます。詳しくはこのマニュアルのドライブモジュールセクションをご参照 ください。

ドライバー

ロードパラメーター設定に入力されたドライバーインピーダンスを使って理想的なドライ ブレベルが調整されます。(詳細はロードマッチングの項目を参照)

リアルタイムに測定されたインピーダンス値がドライバーページで確認できます。ドライ バーインピーダンスは音が出ているときにのみ測定できます。測定できない場合はインピ ーダンス表示は "?"となります。 ユーティリティページ

スクリーンのコントラスト

スクリーンページは「UTILITY」ページ内にあり、画面のコントラストや見る角度などを 調整できます。調整範囲は0から100%で、1%単位で変更可能です。

ステレオリンク

DSP ドライブモジュールの A と B、C と D はステレオリンクが可能です。ステレオリンク をしていると、一方のドライブモジュールに対して行ったパラメーター変更は、もう一方の ドライブモジュールにも反映されます。

ステレオリンクの設定は「UTILITY」ページ内の STEREO ページで設定できます。

注)ステレオリンクは同じサイズのドライブモジュールに対してのみ有効です。

注) ステレオリンクはプリセットには保存されません (スナップショットには保存できます)

現状の IP アドレス

「UTILITY」メニューの中の「IPP Curr」ページにて確認できます。ここでは編集できません。

IPモード

IP アドレスは自動 IP を表す'Auto'、または固定 IP を表す'Static'から選択可能で、これは「UTILITY」メニューの中の「IP MODE」ページにて変更できます。

注)システムとして必要でない場合は固定 IP モードを使用しないでください。VU-Net ソフトウェアとの接続は Auto モードで問題なく行えるからです。固定 IP モードの場合、設定された IP アドレスがホーム画面上で点滅します。

詳しくはイーサネットコンフィグレーションの項をご参照ください。

IP Static

ここではロータリーエンコーダを使って固定 IP アドレスを設定できます。「UTILITY」メ ニューの中の「IP Static」ページにて変更できます。このページは固定 IP モードに設定さ れていた場合にのみ表示されます。

スナップショットのストア

「UTILITY」メニュー内のこのページにてアンプ全体の設定に対するスナップショットが ストアできます。 スナップショットのリコール

「UTILITY」メニュー内のこのページにてアンプ全体の設定に対するスナップショットを リコールすることができます。

スナップショットの項と、Aux ポートの項を参照ください。

Bandwidth 設定

「UTILITY」メニュー内のこのページではパラメトリック EQ のバンドワイズをオクター ブ表示なのか、Q 表示なのかを切り替えることができます。

Aux スタイル

「UTILITY」メニュー内のこのページでは Aux ポートの設定が確認でき、調整することが できます。

詳細は Aux ポートの項をご参照ください。

ECO

「UTILITY」メニュー内のこのページでは、デバイスが使用されていないときに、ローパ ワーモードに切り替えることで電気を節約することができます。「スタンバイ」が一番早い 省エネモードですが、信号が入ると自動的にすぐ復帰します。該当するスタンバイタイムで パワーセーブに入るまでの時間を設定できます。一定時間信号が検知されないとスタンバ イ設定になるというわけです。この機能は「マニュアル」に設定すると完全に OFF になり ます。しかし自動に設定していたとしても、入力信号を検知した場合は一瞬で立ち上がるの で、特にマニュアルにする必要はないと思われます。

'Now'パラメーターは手動でスタンバイ状態にするものです。使用しないときに意図的にス タンバイにしたいときに使用してください。

一方「スリープ」はほとんど電気を消費しない深い省エネモードです。しかしこの復旧時に は何秒かかかります。またこれは手動でしか復旧しません(VU-Net ソフトウェアからか、 物理的にアンプのスイッチを OFF/ON するか)

該当するスリープタイムでスリープモードに入るまでの時間を設定できます。一定時間信 号が検知されないとスリープ設定になるというわけです。この機能は「マニュアル」に設定 すると完全に OFF になります。

外部ブレーカープロテクション(EBP) パワーユーティリティページ(PWR)では外部ブレーカープロテクション(EBP)機能に アクセスできます。ここでは会場の電源に制約があって、一時側の電源ブレーカーやヒュー ズが飛ぶ恐れがあるのを防ぐため、出力パワーを抑えるためのものです。アンプが接続され ている電源の一時側のブレーカーやヒューズの値に EBP の値を合わせてください。

イーサネット

イーサネットコンフィグレーション

デバイスの IP アドレスは基本的には自動で割り振られます。必要でなければ特別なセット アップは必要ありません。

初めて VU-Net ソフトウェアをインストールして立ち上げた際に、コンピューターのファ イアウォールが VU-Net ソフトウェアのアクセスの許可を求めてくることがあります。 注) クローズネットワークの場合も、パブリックネットワークの場合もこれは必ず許可して ください。

DHCP

2 つの IP アドレスのレンジがあります。1 つ目は DHCP サーバーがあるとき、2 つ目はな い時です(このときデバイスとコンピューターの間で「AutoIP」を使って IP アドレスを振 り分けます)。デバイスとコンピューターは同じ IP アドレスの系統にいなければなりませ ん。DHCP サーバーが存在する、例えばオフィスのネットワーク環境のような場合、デバ イスとコンピューターは同じ IP アドレスの系統を割り振られ、すぐにつながります。

AUTO-IP

デバイスは起動とともに DHCP サーバーを探しに行きます(Online インジケーターが点 滅することでこれを示しています)。およそ 1 分間 DHCP サーバーを探すという作業が行 われ、そののち AutoIP に入って行きます。

他のネットワークにつながっていたり、単独で起動していたりしたコンピューターは接続 に時間がかかる場合があります。この場合は既に AutoIP 機能を使用しているからです。ほ おっておけばつながるのですが、場合によっては数分間かかる可能性もあります。

固定 IP

デバイスやコンピューターが固定 IP を使用する場合、同じ IP アドレスの系統にいなけれ ば、VU-Net ソフトウェアはデバイスを発見できません。(たとえば違うサブネットだった 場合など) 理由がない限り、IP アドレスを固定で使用するのは避けたほうが良いです。 ただしネットワークシステムに精通した方の場合は除きます。 IP トラブルシューティング

もし VU-Net ソフトウェアがデバイスにつながらない場合…

- ・DHCP サーバー機能を持ったルーターを使用することをお勧めします。これが IP アドレ スに関して最もトラブルフリーな方法だからです。コンピューターやデバイスの電源を 入れる前に DHCP サーバーの電源を入れるようにしてください。
- ・DHCP サーバーを使用しない場合、コンピューターとデバイスの IP アドレスが同じ系統 のものになっていることを確認してください。通常、アドレス初段の数字は同じなはずで す。
- ・もし DHCP サーバーがない場合、まず 10 分待ってみましょう (コンピューターが正し いアドレスを取得するまで)。それでもだめな場合は再起動します。
- ・コンピューターのファイアウォールセッティングが VU-Net ソフトウェアのアクセスを
 許可しているかどうかを確認してください。プライベートもパブリックもです。

スナップショット

スナップショットのリコールは、デバイス本体のユーザーインターフェースから、または VU-Net ソフトウェアから、あるいはデバイス背面の AUX ポートを使っても行えます。

本体のスナップショットメニューはユーティリティページにございます。スナップショットをリコールすると、各入力、出力にコンポーネントを呼び出し、他のデバイスのセッティング情報も呼び出されます。したがってプロセッサー全体に対するプリセットという形です。VU-Net ソフトウェアや本体を使ったスナップショットリコールのほか、いくつかのプリセットは背面の AUX ポートからも読み出し可能です。

詳細は AUX ポートの項をご確認ください。

スナップショットではドライブモジュールの中のパラメーターは個別には保存されません。 スナップショットのリコールは、限定された入出力に対して行うというよりも、スナップシ ョットが保存されたときのすべてのパラメーター情報をストアするという意味合いです。 OEM プリセットはユーザースナップショットに何が保存されているかにかかわらず、アッ プデート可能です。ただし、ドライブモジュール内の微細な変更は、あらかじめドライブモ ジュールプリセットとしてすべて保存したうえで、スナップショットを保存することをお 勧めします。

モジュールのコンポーネントとスナップショットの概要ページをご参照ください。

AUX ポート

AUX 端子は X と Y という 2 つの入力を持っています。これはシンプルな接点制御で(リレ ーやスイッチを用いて)、あるいは外部のロジック制御機器からの信号で、以下に記載した アンプの状態を変更することが可能です。AUX 入力のいずれかをグランド(アースのマー クがあります)にショートさせることで実施でき、外部からの電源供給は必要ありません。 しかしながら、もし外部機器から制御したい場合は実施可能で、このとき低いほうの電圧が +0.5V 以下になるように、また高いほうの電圧が+24V 以下になるように設定してくださ い。

ユーティリティメニュー内の AUX ページの Style パラメーターを設定することで、AUX ポートは何通りかの動作を実現できます。

・None - なにもしない

- ・2+MUTE スナップショット1または2が該当する AUX ポートターミナルのショート
 によって呼び出される(モーメンタリーでもラッチでも OK) ほか、両方の AUX ポート
 ターミナルのショートでデバイスのミュートが可能
- ・3 Snap 下図に示す AUX ポートターミナルのショーティングのパターンによって、スナ ップショット1、2、3 がリコール可能
- ・4 Snap 下図に示す AUX ポートターミナルのショーティングのパターンによって、スナ ップショット1、2、3、4 がリコール可能
- ・3+MUTE 下図に示す AUX ポートターミナルのショーティングのパターンによって、
 スナップショット1、2、3がリコール可能。両方の AUX ポートターミナルのショート
 でデバイスのミュートが可能

下図はそれぞれの AUX ポートモードで発現する、それぞれの AUX 接続パターンを示した ものです。

AUX X	AUX Y	2+MUTE設定	3 Snaps設定	4 Snaps設定	3+MUTE設定
		モーメンタリーまたはラッチ	モーメンタリーまたはラッチ	ラッチ	ラッチ
OPEN	OPEN	変更なし	変更なし	スナップショット1のリコール	スナップショット1のリコール
Gndとショート	OPEN	スナップショット1のリコール	スナップショット1のリコール	スナップショット2のリコール	スナップショット2のリコール
OPEN	Gndとショート	スナップショット2のリコール	スナップショット2のリコール	スナップショット3のリコール	スナップショット3のリコール
Gndとショート	Gndとショート	MUTE	スナップショット3のリコール	スナップショット4のリコール	MUTE

いくつかのモードでは AUX ポートはモーメンタリー (モーメンタリープッシュボタンや、 モーメンタリーリレーなどで作るショーティングスイッチの回路) でもラッチ (ロータリー スイッチのように、各接点がつながっているがいずれかが選択できる回路) でも動作します。 いくつかのモードではラッチでしか動作しませんので、ご注意ください。

注) この AUX ポートを使った制御がされている間は、または AUX Style が State (ラッチ) モードに設定されている場合は、メニューのスナップショットリコールはできません (VU-Net ソフトウェアからもできません)。またこの状況では本体ではスナップショットメニュ ー自体にアクセスできず、ホーム画面上にはスナップショット番号が表示されます。

詳細はスナップショットの項をご参照ください。

レイテンシー

全てのデジタルシグナルプロセッサー、および違う信号のフォーマットのコンバート(アナ ログ、デジタル、ネットワークオーディオなど)は必ず一定の遅延が発生します。

もちろんメーカーはこのレイテンシーを最小限にするために努力をしていますが、0 にはな りません。少ない遅延ではありますが、その正確な値を知っておくことは有益です。ここで は様々な信号経路で生じる遅延量についてまとめています。

入出力に関するレイテンシー

アナログ入力	0.385ms
デジタル入力(サンプリング周波数 96kHz)	0.5ms
デジタル入力(サンプリング周波数 48kHz)	0.66ms
アナログ出力	0.402ms
AES3 出力	0.1ms
Dante 出力	0.5ms
プロセッシングに関するレイテンシー(基本的	りに固定値で 1.53ms)
入力 FIR ハイシェルビングフィルター	0.48ms (OFF にした場合は 0ms)
LIR リニアフェイズクロスオーバー	1.19ms/Fhp(kHz), 最大で 30ms★
VxLim リミッター(VX モード OFF)	0.12ms/Fhp(kHz), 最大で 1.53ms★
VxLim リミッター(VX モード ON)	0.358ms/Fsplit(kHz), 最大で 1.53ms☆

★この遅延量はクロスオーバーのハイパスフィルター周波数に応じて変化します ☆この遅延量はクロスオーバーの Vx 分割周波数に応じて変化します

重要なヒント:プロセッサーのレイテンシーは LIR クロスオーバーや FIR ハイシェルビン グを使用しなければ、基本的に 1.53ms 固定です。したがいまして、この場合は入力の遅延 と出力の遅延を足した値が実際の遅延量となります。もし LIR や FIR が使用されていた場 合、ドライブモジュールのプロセッシングレイテンシーはこの値を超える場合があります。 ドライブモジュールのレイテンシーは該当する入力 DSP チャンネルのレイテンシーページ にて確認することができます。該当する入力チャンネルを選択し、▽を何回も押すとレイテ ンシーページに行き着きます。

LIR が使用されていた場合、Vx リミッターを使用すると 1.53ms を超えることがあります。 ハイパスフィルター周波数が 40Hz よりも下に設定されると、フィルターは自動的に Linkwitz-Riley に変更され、結果的にレイテンシーが 30ms 以下に抑えられます。

注) ユーティリティメニューのレイテンシー表示には入出力のレイテンシーを含んでいま せん。

注)FIR フィルターや LIR、VX リミッターを使う場合は、必ずドライブモジュールのレイ テンシーをチェックしてみてください。

例)

アナログ入力	0.385ms
アナログ出力	0.402ms
入力 FIR ハイシェルビングフィルター(OFF)	0ms
LIR リニアフェイズクロスオーバー(500Hz)	2.38ms
VxLim リミッター(VX モード ON、1kHz でスプリット)	0.358ms
合計	3.525ms

注) ひとつのドライブモジュール内の各出力のレイテンシーは一定化されます。 遅い出力に 合わせて、他の出力に自動的にディレイを追加します。 これによって同じドライブモジュー ルを構成する出力はすべてトータルレイテンシーが同じになります。

しかしドライブモジュールを超えたほかのものとはこのコンペンセーションは働きません。 違うドライブモジュール同士は、異なるレイテンシーを持つ可能性があることにご留意く ださい。

Secure モード(セーフモード)

これが有効になっているとフロントパネルでのコントロールは無効となります。信号処理 が変更できなくなり、いたずらに変更されることを防げます。この状態で唯一できるのはス ナップショットのリコールです。もしこれもしてほしくない場合は、すべてのプリセットバ ンクに同じプリセットを入れておきましょう。この Secure モード(セーフモード)では、 インジケーターは通常通り動作します。Secure モード(セーフモード)を有効にするため には、ユーティリティボタンを5秒間長押ししてください。解除する場合もユーティリテ ィボタンを5秒間長押ししてください。この Secure モードでは、画面上にそうであること が表示されます。イーサネット通信はこのモードでも引き続き使用できます。

オーバーレイ

もしデバイスがモジュールグループで使用されていた場合、そして有効なオーバーレイが あった場合、オーバーレイインジケーターが点灯します。これは UTILITY ボタンと Enter ボタンを同時に長押し5秒間で解除することができます。 詳しくはオーバーレイの項目をご参照ください。

工場出荷時に戻す

もし、デバイス内のすべてのセッティングを消去し、工場出荷状態に戻したいという場合は、 △と MUTE 1 ボタンを同時に長押し 5 秒間で実施することができます。その後は画面の表 示に従ってください。Enter を押すと実行されます。本当に初期化するときにのみ実行して ください。▽を押すとキャンセルできます。別な方法は VU-Net ソフトウェアを使用する やり方です。デバイスコントロールパネルの右下にあるボタンを押すと選択できるメニュ ーの中から'revert to factory settings'を選択してください。

保護システム

包括的なプロテクションによってスピーカーとアンプ自身を長持ちさせるように設計され ています。常時いくつかの重要なパラメーターを監視し、場合によってゲインを下げたり、 ミュートしたりします。これは問題の深刻さによって一時的な場合も、恒久的な場合もあり ます。アンプは復旧したり、再起動したりできますが、問題が解決していない場合、またプ ロテクトが発動する可能性があります。

リミッターはアンプが過負荷にならないよう、またドライバーが過負荷にならないよう動 作します。リミッターインジケーターはドライバーがリミット領域に入ったことを警告し ています。

些細な問題はアンプを絞ることで解決します。妥当な値までレベルを下げ、少し時間を置け ば、とくに何もしなくてもアンプは問題なく復旧します。問題の原因が無くなれば、アンプ は自動的にもとに戻るように設計されています。

プロテクションによってレベルが下がった場合、アンプの左側のチャンネルプロテクショ ンインジケーターが点灯します。これは出力がクリップした時にも点灯します。このインジ ケーターはプロテクションによってチャンネルがミュートされた場合には光り続けます。 このときミュートボタンも同時に点滅します。通常、画面にもそのことを知らせる警告メッ セージが表示されます。プロテクションの種類によっては、すべての出力に影響する場合も あります。その場合はアンプのインジケーターが点灯し、すべてのチャンネルのミュートボ タンが点滅することになります。

プロテクションの内容の表示の仕方

プロテクションインジケーターが点灯した際の理由について以下にまとめました。

アンプインジケーター	ドライバーインジケーター	追記
	リミッターのスレッショルドを6dBオーバー	
	温度検知型リミッターの発動	
	エクスカーションリミッターの発動	
アンプがクリップ		
アンプのクリップリミッターが発動		
アンプの電流値リミッターが発動		
アンプのVHFリミッターが発動		
電源の電流値リミッターが発動		全出力チャンネルが影響を受けます
電源の電力リミッターが発動		全出力チャンネルが影響を受けます
温度検知型リミッターの発動		全出力チャンネルが影響を受けます

警告表示

VU-Net ソフトウェアのシステムビューのデバイスバーに色のついたインジケーターがあり、ここでデバイスの状況を表します。状態を示す表示は以下の3つです

・赤: エラー (デバイスの何か不具合が起きているので注意が必要)

・黄: チェックしてください (デバイスのパフォーマンスが完全ではありません)

・緑: OK (デバイスは安全に動作しています)

このインジケーターの上にマウスのカーソルを持って行き数秒すると、現状の状況が表示 されます。

もしレポートされた警告が無視できるものであった場合、システムビューのバーの上で右 クリックすることで、これを無効にする動作ができます。'Enable/Disable Alarms'というの がそれで、この作業をするとそのレベルとそれ以下の重要度の警告は 2 度と出なくなりま す。

一回 Disable したものは、再び右クリックすることで元に戻せます。'Enable/Disable Alarms'を操作して選択してください。

すべての警告はデバイス本体の画面にも表示されます。

警告表示で Fault リレーを動作させることもできます。詳しくは Fault リレーの項目をご参照ください。

Fault リレー

フェニックスコネクターの接点を使って、3 つのリレー接続が可能です。アイドル状態(ア ンプの電源が入っていない)のリレーは、本体の背面パネルに表記されている回路図のよう になっています。アンプに電源が入るとリレーは入ります。何か問題が起こった場合にはリ レーは離れます。これを使って不具合情報を外部に伝えることができます。リレーが離れた ということは、何かエラーが発生したか、電源が落ちたということです。

詳しくは警告表示をご参照ください

ログ

VU-Net ソフトウェアでは様々なパフォーマンス測定を実施できます。時間軸で表すパフォ ーマンスの状況グラフ、3日間までさかのぼるエラー表示のログなどです。アンプ電源が入 っていない状態では当然記録はできないので、ログとログの間の電源が切れている時間は 「||」というマークで表されます。

記録されるイベントは

Supply Current - 1 次側の電源からどれだけの電流値が供給されたか DC Link Voltage - 1 次側の電源からどれだけの電圧が供給されたか Thermal Capacity – どのくらい耐熱許容量が残っているか Driver Current (各出力ごとに)- ドライバーに送られた電流量の平均値 Driver Impedance (各出力ごとに)- ドライバーインピーダンスの平均値 Protection Limiting(各出力ごとに)- アンプが破損を避けるためにどれだけ自身を絞る動き をしたか

ログデータは外部へエクスポート可能で、ログの上で右クリックすると、テクストメニュー が表示されます。そして"copy log data to clipboard(クリップボードにコピー)"を選択し てください。そうするとデータはスプレッドシートに張り付けることができるようになり ます。何か問題が起こった場合に、販売元からこういった作業を要望されることがあります。 またはこのエラーログを含む、すべての操作履歴、パフォーマンス履歴は 1 つのファイル 化することもできます。File>Save Device Diagnostics を操作してください。販売元はこの データを手掛かりにすることもできます。 VU-Net ソフトウェア

iKon アンプシリーズはイーサネット接続で複数のデバイスを同時に制御、監視が可能です。 システム全体がどのようにドライブしているかを知ることができます。これは PC を同じイ ーサネットネットワーク環境に接続し、Martin Audio VU-Net ソフトウェアを使用するこ とで実現できます。VU-Net ソフトウェアではすべてのアンプの機能が直感的に制御可能で す。

VU-Net ソフトウェアは Martin Audio のウェブサイトからどなたでも無償でダウンロード 可能です。VU-Net ソフトウェアの操作の詳細は VU-Net ソフトウェアユーザーガイドをご 参照ください(同じダウンロードサイト内にございます)

VU-Net ソフトウェアでのiKon アンプでの操作や、そのほかの VU-Net 対応の Martin Audio 製品のご紹介が記載されています。

消費電力と発熱量

iK42

Sleep mode (slow wake up)						
AC Mains Power Draw (Watts)	Current Draw (Amps)			Thermal Dissipation		
	120Vac 230Vac		Watts	kcal/hr	btu/hr	
4.5	0.4	0.2	4.5	4	15	

Standby mode (fast wake up)						
AC Mains Power Draw (Watts)	Curren (An	nt Draw nps)		Thermal Dissipation	I	
	120Vac 230Vac		Watts	kcal/hr	btu/hr	
60	1.0	0.5	60	52	205	

Running with no audio signal						
AC Mains Power Draw (Watts)	Curren (An	nt Draw nps)		Thermal Dissipation		
	120Vac 230Vac		Watts	kcal/hr	btu/hr	
195	2.9	1.5	195	168	665	

Running in 2 Ohm mode* (all channels driven)								
Load (ohms)	Signal duty & Crest Factor	Input power	Current Draw (amps)		Thermal Dissipation			
		(Watts)	120Vac	230Vac	Watts	Kcal/hr	Btu/hr	
2	1/8, cf = 4.0 (12dB)	3000	33.5**	17.5	500	430	1706	
4	1/4, cf = 2.8 (9dB)	3475	28.8**	20.3	475	408	1621	
4	1/8, cf = 4.0 (12dB)	1780	19.7	10.3	280	241	955	
8	1/4, cf = 2.8 (9dB)	1750	19.2	10.0	250	215	853	
8	1/8, cf = 4.0 (12dB)	975	11.0	5.8	225	193	767	

注)

- ・アンプはオーディオプロセッシングをしていない状態
- ・Hameg HM8115-2 パワーアナライザーを使用して測定
- ・実際の測定は 230V AC / 50Hz 環境で実施
- ・120V AC の電流値は計算値です。
- ・*M20 では 4Ω 、 8Ω のローインピーダンスモードがございません
- ・**EBP リミッターは 32A に設定されていますが、インパルスの早いプログラムソースに
- よっては越すことがあります。

iK81

	Sleep mode (slow wake up)						
AC Mains Power Draw (Watts)	Curren (An	Current Draw (Amps)		Thermal Dissipation			
	120Vac	230Vac	Watts	kcal/hr	btu/hr		
4.5	0.4	0.2	4.5	4	15		

		Standby mode	(fast wake up)		
AC Mains Power Draw (Watts)	Curren (An	nt Draw nps)		Thermal Dissipation	
	120Vac	230Vac	Watts	kcal/hr	btu/hr
60	1.0	0.5	60	52	205

Running with no audio signal					
AC Mains Power Draw (Watts)	Current Draw (Amps)		Thermal Dissipation		
	120Vac	230Vac	Watts	kcal/hr	btu/hr
204	3	1.55	204	175	696

Running (all channels driven)								
Load	Load	Signal duty & Crest Factor	Input power	Current Draw (amps)		Thermal Dissipation		
wode	(onms)		(Watts)	120Vac	230Vac	Watts	Kcal/hr	Btu/hr
2 Ohm	2	1/8, cf = 4.0 (12dB)	1703	20.4	10.6	453	390	1547
2 Ohm	4	1/4, cf = 2.8 (9dB)	1652	19.8	10.3	402	345	1371
2 Ohm	4	1/8, cf = 4.0 (12dB)	938	11.9	6.2	313	269	1069
4 Ohm	4	1/4, cf = 2.8 (9dB)	2967	31.6	16.5	467	401	1592
4 Ohm	4	1/8, cf = 4.0 (12dB)	1617	20	10.4	367	315	1251
4 Ohm	8	1/4, cf = 2.8 (9dB)	1605	19.2	10.0	355	305	1211
4 Ohm	8	1/8, cf = 4.0 (12dB)	920	16.6	6.1	295	254	1007
8 Ohm	8	1/4, cf = 2.8 (9dB)	2825	33.1	17.3	325	279	1109
8 Ohm	8	1/8, cf = 4.0 (12dB)	1567	18.48	9.6	317	272	1081

注)

・アンプはオーディオプロセッシングをしていない状態

・Hameg HM8115-2 パワーアナライザーを使用して測定

・実際の測定は 230V AC / 50Hz 環境で実施

・120V AC の電流値は計算値です。

プロセッシングのブロックダイヤグラム

入力メニューのマップ

出力メニューのマップ

	-		-	
HOME	CH 1 GAIN	CH 2 OMINE	CH 3 GUINT	GAIN CHIPH
		00 00	CH CH	00 00
	CH 1 Onget	CH 2 OUTVE	CH 3 - Comu	
			08 00	00 00
	CH 1 Output	CH 2 OMINE	CH 3 Output	CH N DURUT
	CH1 Com	CH 2	CH 3 CURUT	CH N ORITON
	00 00	00 00	00 00	00.00
1	CH 1 Oursur	CH 2 Oturnet	CH 3 DUTHUR	CH N OMPUT
	CH 1 Output	CH 2 ONTRA	CH 3 CHINE	CH N OWINT
	CH 1 Output	CH 2 OWING	CH 3	CH N Output
			00 00	00 00
	GH 1		CH 3 Count	
		00 00	00 00	00 00
	CH 1 Outur	CH 2	CH 3 CUTTUR	
		00 00	00.00	00 00
	CH 1	CH 2	CH 3 OUTVI	CH N COM
			00 00	00 00
	CH 1 Output	CH 2	CH 3	
		00 00	00 00	00 00
	CH 1 Output	CH 2 Ourse	CH 3 Output	
				00 00
	CH 1 CHINA	CH 2 ONING	CH 3 COMUN	CH N CHURNE
	00 00			00 00
1	CH 1 Ourse	CH 2 DUINT	CH 3 CUINT	CH N OUTAN
	00 00	00 00	00 00	00 00
	CH 1 Output	CH 2 EQ 2	CH 3	CH N OWEN
		00 00	00 00	00 00
	CH 1 Comme	CH 2 EQ 1	CH 3 ORINA	
	do da	00 00		00 00
	CH 1 OWNER	CH 2 EQ 1	CH 3 - CONTRA	CH N CUINT
	00 00	00 09	CH0 CB0	00 00
	CH 1 Contract	CH Z	CH 3	
		00 00		
	CH 1 October	CH 2 - Owner	CH 3 OUTFUT	
	00 00	00 00	C00 C00	00 00
	CH 1 DEL	CH 2 DEL	CH 3 DEL	CH N DEL
	00	-		00

ユーティリティメニューのマップ

 -	
STER	υτιμτγ
-	
ECO	
PWR	υτιστ
00 00	
AUX STYLE	υτιμτν
-	
PARA	O VTIUTY
SCREEN	
RECAL SNAP	UTIUTY
STOR SNAP	UTIUTY
STATIC	UTIUTY
IP MODE	Отшту
IP CURR	UTIUTY
-	

EQ とフィルターのレスポンス

スペック

General	
Number of Output channels	Four (iK42) or Eight (iK81)
Total power output (iK42)	20,000/10,000/6,000 Watts RMS (iK4220, iK4210, iK4206)
Total power output (iK81)	10,000/6,000/3,000 Watts RMS (iK8110, iK8106, iK8103)
Input types	Analogue, AES3, Dante
Control, monitoring & alarm	Ethernet, configurable function Volt-free relay and contact closure port
Energy saving modes	Standby and deep sleep, both with auto-sleep timers
System sleep and wakeup	Front panel switch, network command, contact closure and audio detection $% \left({{\left[{{{\rm{s}}_{\rm{s}}} \right]}} \right)$
Max ambient temperature (full power, no limiting)	40degC (105degF)
Audio	
Amplifier topology	Proprietary 5th generation Martin Audio Class D
Amplifier modulation scheme	Low feedback, multiple loop, with feedforward error correction
Dynamic range (analogue input to speaker output)	>113dBA typ.
Dynamic range (AES3 or Dante input to output)	>114dBA typ.
Frequency response	<7Hz to >30kHz, 4 Ohms, -2.5dB.
Total harmonic distortion, THD	<0.05% typ, 1kHz, AES17, 4 Ohms.
Inter-channel crosstalk (worst combination of channels)	Better than -85dBr at 1kHz.
	Better than -75dBr at 10kHz.
Slew Rate	>60V per microsecond typical
Damping factor (Ref 8 Ohms)	>800 at amplifier output
Maximum analogue input level	+20dBu.
Analogue input sensitivity range for full output	0dBu to +20dBu, continuously adjustable.
Analogue input	20k Ohm, electronically balanced.
Analogue link	Directly connected to the analogue input.
Analogue ground scheme	AES48 standard compliant.
AES3 input	Transformer isolated with active cable equalisation for extended range
AES3 link	Active signal regeneration with automatic direct bypass to the AES3 input if the unit is unpowered.
AES3 supported sampling rates	24kHz to 192kHz (auto locking).

Digital processing

Resolution	40 bit, using proprietary LMD (Linea-Micro-Detail) algorithms
Sample rate	96kHz throughout
Special functionality:	Class leading limiter suite (See the 'speaker protection systems' section)
	Hardman crossover filters (Better out of band rejection than Linkwitz-Riley)
	LIR crossover filters (Linear Phase without the compromises of FIR filters)
	FIR Shelving EQ filters (For linear phase filtering).
	Overlays (Twelve additional independent overlays of EQ, Delay and Gain)

Power Output iK42

Power specification	RMS output power per channel, all channels driven with continuous program material and a nominal ambient		
	temperature of 40degC / 105degF		
Crest Factor of 4 (12dB), 2-Ohm nominal load	5,000W		
Crest Factor of 2.8 (9dB), 4-Ohm nominal load	3,000W		
Crest Factor of 2 (6dB), 8-Ohm nominal load	1,500W		
Bridged, per channel pair, 4 Ohm load	10,000W		
25V line (CV) operation, Crest Factor 4 (12dB)	1250W		
70V line (CV) operation, Crest Factor 4 (12dB)	3500W		
100V line (CV) operation, Crest Factor 4 (12dB)	5,000W		
Power Output iK81			
Power specification	RMS output power per channel, all channels driven with		
	continuous program material and a nominal ambient		
	temperature of 40degC / 105degF		
Crest Factor of 4 (12dB), 2-Ohm nominal load	1,250W		
Crest Factor of 2.8 (9dB), 4-Ohm nominal load	1,250W		
Crest Factor of 2 (6dB), 8-Ohm nominal load	1,250W		
Bridged, per channel pair, 4 Ohm load	2,500W		
25V line (CV) operation, Crest Factor 4 (12dB)	625W		
70V line (CV) operation, Crest Factor 4 (12dB)	1,250W		
100V line (CV) operation, Crest Factor 4 (12dB)	1,250W		
Power supply			
Topology (main power supply)	3rd generation Series Resonant.		
Topology (auxiliary and standby supplies)	Low quiescent Eco-Flyback.		
Internally stored energy	>600 Joules.		
Mains input voltage range (automatically configured)	85V to 240V.		
Mains input frequency range	47Hz to 63Hz.		

プロテクションシステム

Mains inrush current (max for <10ms)

注) どんな状況下でもそこで得られる最大限のパワーを実現しようとしており、過激な状況 のときにのみリミッターは発動します。危険な状況が起こったときにのみ、ミュート動作が されるものであり、状況が改善すれば自動的にもとに戻ります。

6A at 115V, 12A at 230V.

System protection	Speaker protection	
Excessive output current	Audio soft-clip limiter	
Excessive power supply current	VxLim, Multiband peak limiter	
Excessive amplifier section temperature	VxMax, Multiband overshoot limiter	
Excessive power supply section temperature	Vx-Xmax, Driver excursion limiter	
Excessive DSP section temperature	Vx-Tmax, Driver thermal limiter (long term power limiter)	
Mains voltage out of range	DC offset protection	
Fan speeds out of range	Excessive HF energy (VHF) limiter	
Internal power rails out of range		
Power distribution protection systems		
Mains inrush current limiting (soft start and anti-surge).		
Mains average current limiting (mains breaker / fuse trip protection).		
Randomised initialisation when powered up to reduce the pe	ak power demand in large systems.	
Monitoring and logging		
Supply current logged vs time	Number of power cycles counted	
Supply voltage logged vs time	Number of mains brownout events counted	
Thermal Capacity logged vs time	Fan speeds continuously monitored	
Each driver current logged vs time	Fan under-speed events counted	
Each driver impedance logged vs time	Various protection mute events counted	
Protection limiting for each output logged vs time	Driver Impedance continuously monitored	

Physical	
Cooling	Variable speed fans.
Airflow	Front to back.
Air filtration	Washable media, changeable without the use of tools.
Analogue IN and LINK connectors	Genuine Neutrik™ XLR.
AES3 IN and LINK connectors	Genuine Neutrik™ XLR.
Audio output connector	Genuine Neutrik™ Speakon.
Mains input connector	Genuine Neutrik™ 32A PowerCon.
Dante Primary and Secondary	Shielded RJ45.
Relay output & contact closure inputs	Phoenix pluggable terminal block.
Front panel display	Graphical, backlit, high contrast, daylight visible.
Front panel encoders	Two, indented, velocity sensitive.
Front panel push buttons	Large, tactile, illuminated.
LED indicators	Bright, easily differentiated
Enclosure	Standard 19" 2U (88mm) with handles and optional rear
	support system
Depth (behind rack ears)	357mm (14").
Net Weight	12.5kg (27.5 pounds).
Options	
Rear rack support kit	Part Number

Mechanical Installation

